Université de M'sila

L.M.D.(S.T.)

M'sila le :05/02/2008

Durée : 1^h : 30

Examen final: Février 2008

Exercice01:(3pts)

Soit l'application $f: \mathbb{C}/\{-i,i\} \to \mathbb{C}$ définie par : $f(z) = \frac{z}{1+z^2}$

1) Montrer que f est surjective, est elle injective?

Exercice02:(3pts)

Seit la fonction f définie par :

$$f(x) = \begin{cases} e^{x} & si & x < 0 \\ ax^{2} + bx + c & si & x \succeq 0 \end{cases} \quad a, b, c \in \mathbb{R}.$$

Déterminer a, b, c pour que : 1) f soit continue.2) f' soit continue.

Exercice03:(7pts) Soit $f(x) = x \log(1+x)$

- 1) Trouver le D.L. d'ordre 3 au voisinage de $x_0 = 0$ de la fonction f.
- 2) Trouver le D.L. d'ordre 3 au voisinage de $a_0 = 0$ de la fonction $\cos(x)$.
- 3) Déduire par la division Euclidienne en puissance croissante de x le D.L. d'ordre 3 au voisinage de $x_0 = 0$ de la fonction $g(x) = \frac{x \log(1+x)}{\cos(x)}$.
 - 4) Calculer la limite suivante $\lim_{x \to 0} \frac{x \log(1+x)}{\cos(x)}$

Exercice04:(5pts) Soit $f \in L(E, F)$. E, F deux espaces vectoriels

- 1) Montrei que $Ker(\hat{f})$ est un sous espace vectoriel de E .
- 2) Soit $f \in L(\mathbb{R}^3, \mathbb{R}^3)$. définie par : T(x,y,z) = (x+2y-z,y+z,x+y-2z) .

Irouver une base et déduire la dimension de Ker(T) , Im(T) .

Exercice05 :(2pts) Qu'elle est le théorème utiliser dans la démonstration que les fonctions : $\sin(x)$, $\cos(x)$, tg(x) et $\cot g(x)$ possèdent des fonctions réciproques .

(Citez le texte du théorème).

Bonne chance

prof. A. Taiba

2008/02/05 المدة: ساعة ونصف جامعة محمد بوضياف بالمسيلة قسم الجذع المشترك

الإستحان السداسي الأول في مقياس MATH01

التمريين الأول(3ن).

 $f(z) = \frac{z}{1+z^2}$ المعرف بـ: $f: c/\{-i,i\} \longrightarrow c$ ليكن التطبيق

1) برهن أن f غامر ، هل هو متباين ؟

 $a,b,c \in \Re$. $f(x) = \begin{cases} e^{x} & \text{s.i.} & \text{x. < 0} \\ ax^{2} + bx + c & \text{s.i.} & \text{x. > 0} \end{cases}$

اوجد a,b,c بحيث يكون لدينا: 1) f مستمرة على مستمرة

 $f(x) = x \log(1+x)$ حيث ويث الثالث $f(x) = \frac{1}{2}$

 $x_0 = 0$ أوجد النشر المحدود للدالة f من الرتبة (03) في جوار (1

. $\cos(x)$ للدالة $x_0=0$ في جوار $x_0=0$ الدالة (23)

3) إستنتج بالقسمة الإقليدية حسب القوى المتصاعدة لـx النشر المحدود من الرتبة (03) في جوار

 $g(x) = \frac{x \log(1+x)}{\cos(x)} \quad \text{and} \quad x_0 = 0$

 $\lim_{x\longrightarrow 0}\frac{x\log(1+x)}{\cos(x)}$

التمرين الرابع (5 ن).

 $F \cdot E \cdot f \in L(E,F)$ لیکن

1) برهن أن (Ker(f فضاء شعاعي جزني من E

T(x,y,z)=(x+2y-z,y+z,x+y-2z) المعرف ب $T\in L(\Re^3,\Re^3)$ المكن (2 اوجد اساس وبعد Im(T) ، Ker(T) ،

التمرين الخامس (2ن).

 $\cot g(x) \cdot tg(x) \cdot \cos(x) \cdot \sin(x)$: النظرية التي تستعمل في البرهان على أن الدوال تملك دوال عكسية

(أنكر نص النظرية) بالتوفيق

الأستاذ: ع. طيايبة

ملاحظة الإجابة عبر أن تكون باللغة المنرسية، ويسبح للطالب بالسنعال بعض المطلعات بالعربية للمؤورة منشط.

démonstration الير مات