Université de M'sila Département De Tronc Commun SM Filière: Licence 1^{ére} Année LMD SM

MODULE DE CHIMIE I

Série № 07

Liaisons Atomiques

« Moléle de Lewis & Polarisation des liaisons »

Exercice 01:

Etablir et représenter selon le convention de Lewis, la structure électronique des molécules et ions suivants. (L'atome central est souligné, tous les autres lui sont directement liés).

 $\underline{SO_3}^-$, $\underline{SF_4}$, $(\underline{ClO_3})^-$, $(\underline{AlCl_4})^-$, $(\underline{PBr_4})^+$, $\underline{ICl_5}$, $(\underline{NO_2})^-$, $\underline{SO_2Cl_2}$, $\underline{SOF_2}$, $\underline{BCl_3}$, $\underline{Br}F_5$, $(\underline{SCN})^-$, $(\underline{CO_3})^{2-}$, $(\underline{NO_2})^+$, $(\underline{PO_4})^{3-}$. On donne: ${}_7N$; ${}_8O$; ${}_9F$; ${}_{13}Al$; ${}_{15}P$; ${}_{16}S$; ${}_{17}Cl$; ${}_{35}Br$; ${}_{53}I$.

Exercice 02:

1. On considère les molécules suivantes H-F, H-Cl, H-Br, H-I.

Si la liaison entre l'hydrogène et l'halogène était purement ionique ; quelle serait, en unité Debye, la valeur du moment dipolaire µ de chacune de ces molécules ? Sachant que les longueurs de liaison correspondantes valent :

Molécule	Longueur de la liaison en (Å)	
H-F	0,92	
H-Cl	1,27	
H-Br	1,40	
H-I	1,61	

2. En rélité, on trouve expérimentalement les valeurs suivantes pour les moments dipolaires exprimés en unités Debye :

μ (Moments Dipolaires) en (Debye)				
$\mu_{(H-F)} = 1.82$	$\mu_{(H-C!)} = 1.07$	$\mu_{(H-Br)} = 0.79$	μ _(H-I) = 0,38	

Ces valeurs étant différentes de celles trouvées dans la question précéndente, on en déduit que la liaison n'est que partiellement ionique, ce qui est traduit par l'écriture H^{δ^+} - X^{δ^+} . Calculer les valeurs de δ pour les quatre molécules considérées.

On donne : 1 Debye = $0.33. \ 10^{-29} \ C.m$

Exercice pour les étudiants

Le moment dipolaire mesuré du fluorure d'hydrogène H-F est 1,82 D. Sachant que les rayons de covalence de H et F valent respectivement : 0,037 et 0,064.

- Quelle est le valeur des charges partielles δ localisées sur H et F?
- 2. Quel est le pourcentage d'ionicité (% de caractère ionique) de la liaison H-F?

On donne : 1 Debye = 0,33. 10^{-29} C.m

Mr. H BOULEGHLEM

Lundi: 12/12/2011

Année: 2011/2012